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In this paper the classical Rayleigh-Som-
merfeld and Kirchhoff boundary-value
diffraction integrals are solved in closed
form for circular apertures and slits illu-
minated by normally incident plane waves.
The mathematical expressions obtained
involve no simplifying approximations and
are free of singularities, except in the
aperture plane itself. Their use for numeri-
cal computations was straightforward and
provided new insight into the nature of dif-
fraction in the near zone where the
Fresnel approximation does not apply. The
Rayleigh-Sommerfeld integrals were
found to be very similar to each other, so
that polarization effects appear to be

negligibly small. On the other hand, they
differ substantially at sub-wavelength dif-
ferences from the aperture plane and do not
correctly describe the diffracted field as
an analytical continuation of the incident
geometrical field.
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1. Introduction

Diffraction problems in optics typically involve dis-
tances from the diffracting screen which are large in
comparison to the wavelength of light. Accordingly the
Fresnel and Fraunhofer approximations of the principal
classical diffraction integrals are well documented, but
so far no workable expressions have been available for
computations in the near zone. The aim of the present
paper is to develop mathematical procedures for the
latter purpose and use them to study the behavior of
these integrals in the proximity of plane apertures.

We begin by citing the classical scalar expressions for
analyzing optical diffraction by an aperture; namely,
Kirchhoff’s integral equation [1]
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1
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and, alternatively, the Rayleigh-Sommerfeld integral
equations [2, 3, 4]
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In these equations, U is a scalar wave function, � is a
closed surface containing a plane aperture � located in
the xy -plane of a cartesian coordinate system as indi-
cated in Fig. 1, P = (x , y , z ) is the point of observation
(z � 0), Q = (� , � , 0) is a point on � , QP is the distance
between them, n is the aperture normal pointing in the
direction of the positive z -axis, and k = 2�/� is the cir-
cular wavenumber of monochromatic light with wave-
length � .
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Fig. 1. Basic geometry for plane aperture of width 2w . n = aperture normal,
O = coordinate origin, P0 = point source, P = point of observation.

2. Background

The Kirchhoff and Rayleigh-Sommerfeld integral
equations (1) and (2) are alternative forms of the theo-
rem of Helmholtz [5], which expresses Huygens’ prin-
ciple in terms of a scalar wave function U and its normal
derivatives without assuming specific attributes of this
function, except that it is continuous and twice differen-
tiable with continuous derivatives and obeys the homo-
geneous wave equation,

�U + k 2U = 0, (3)

on and within the closed surface � . As Helmholtz’

theorem by itself is insufficient to provide a unique
solution, it is necessary to impose additional constraints
on U by prescribing its boundary values on � .

Kirchhoff considered a “black screen which neither
reflects nor transmits light .” He assumed, plausibly, that
in this case the incident field vanishes altogether on the
opaque portion of the screen and is equal to the unper-
turbed incident field Ugeom(Q) inside the aperture. Thus,

U (Q) = 0 and
�U (Q)

�n
= 0, when Q � � , (4a)

U (Q) = Ugeom(Q), when Q � � , (4b)
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so that Eq. (1) is reduced to Kirchhoff’s familiar for-
mula, where the integration extends over the aperture
area � only, and U is replaced by Ugeom in the integrand.
As it turned out, Kirchhoff’s solution is mathematically
flawed. Poincaré [6] discovered that it contradicts itself
and predicted that it will not reproduce the assumed
boundary conditions Eq. (4a,b).

Sommerfeld [4, 7] recognized that these difficulties
are due to the fact that U and �U /�n cannot both vanish
on any finite portion of the closed surface � unless U is
everywhere identically equal to zero. He remedied the
problem by deriving the integral equations [Eq. (2)]
which require only the boundary values of either U or
�U /�n to specify a solution. Thus he assumed, instead
of Eq. (4a),

�U (Q)
�n

= 0 or U (Q) = 0, when Q � � , (5a)

U (Q) = Ugeom(Q), when Q � � , (5b)

and applied these conditions separately to the first and
second Eqs. (2) Except for a passing reference to “shiny
screens ,” Sommerfeld did not explicitly associate his
theory with the diffraction of polarized light but merely
offered the solution appearing in Eq. (5e), below, as a
mathematically improved alternative to Kirchhoff’s for-
mula. On the other hand, Rayleigh [2,3] emphasized that
the screen must be supposed to be a perfect metallic
reflector so that the boundary conditions Eq. (5a) per-
tain to p - and s -polarized incident light, respectively. He
emphasized, further, that these conditions apply on the
dark side of the screen only, while on the lit side it must
be assumed that

U (p)
geom(Q) = 0 or

�U (s)
geom(Q)
�n

= 0, when Q � � . (5c)

According to Maxwell’s equations, U (p) and �U (s)/�n
must be continuous at the screen and hence it follows
that, taken together, the conditions of Eqs. (5a) and (5c)
stipulate that for either state of polarization U and
�U /�n must both zero on the dark side of the screen.
This is the same as Kirchhoff’s boundary condition of
Eq. (4a), but without mathematical contradictions. The
final result for the Rayleigh-Sommerfeld integrals is

U (p)
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, (5d)
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where, as in Kirchhoff’s theory, the screen itself does

not contribute to the integrals. According to an analysis
performed by Mukunda [8], these expressions do re-
cover the assumed boundary conditions in Eqs. (5a-c) as
P → Q, in the sense that U (s)

RS replicates the assumed
value of Ugeom but not necessarily the compatible value
of �Ugeom/�n , and the converse is true for U (p)

RS.
It should also be noted that Kirchhoff’s solution is

simply the arithmetic mean of the Rayleigh-Sommerfeld
solutions,

uK(P) =
1
2

[u (p)
RS(P) + u (s)

RS(P)], (6a)

and that in the so-called Fresnel limit they are all re-
duced to one and the same expression. For a point source
P0 = (x0, y0, z0), as shown in Fig. 1, and assuming that the
distances �z0 and z are large in comparison to the aper-
ture width 2w and the wavelength � , and that
cos(� � 	0) and cos 	 are essentially equal to 1, one
finds [8]

UK(P) � U (p)
RS(P) � U (s)

RS(P) � UF(P)

=
i�I0eik(z�z0)

zz0
�
�

dQeik�(Q), (6b)

where I0 is the radiant intensity of the source and �(Q)
is a second-order approximation of the path difference
(P0Q + QP ) � (P0O � OP ). It may be estimated that
this approximation is accurate to 1 % or better when
z > 20w and z > 20� so that it is usually satisfied for
narrow apertures and short wavelengths; say, 2w = 0.1
mm and � = 500 nm, as used for pinhole imagery or
classroom experiments. In these cases the Rayleigh-
Sommerfeld and Kirchhoff solutions will hardly be
needed in their rigorous forms, but on the other hand the
reliability of the Fresnel approximation is doubtful for
large apertures and wavelengths. It may not be applica-
ble in the focal planes of fast lenses or in the case of
large apertures used in radiometry and photometry, es-
pecially in the infrared and microwave regions.

Apart from the above, it appears that the behavior of
the Kirchhoff and Rayleigh-Sommerfeld integrals in the
aperture plane has not been documented in the literature
except in two isolated cases. Wolf and Marchand [10]
derived a closed expression for Kirchhoff’s integral UK

inside a circular aperture illuminated by a normally
incident plane wave, using the Maggi-Rubinowicz trans-
formation [11] of UK and a stationary-phase approxima-
tion. As shown in Fig. 2, this expression gives a fair
indication of an oscillatory behavior of UK in the aper-
ture plane but exhibits spurious singularities at the aper-
ture center and rim. Osterberg and Smith [12] found a
closed expression for U (s)

RS at axial points of observation
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Fig. 2. Approximate behavior of Kirchhoff’s integral UK inside a
circular aperture of diameter 2w = 10� . Computed from Eq. (A16) of
Ref. [10].

behind a circular aperture and confirmed that it does
represent a continuous extension of the incident field
into the half space z > 0. On the other hand, it is evident
from Fig. 3 that the combined field is not continuously
differentiable at z = 0, showing that U (s)

RS still does not
fully meet the requirements of Helmholtz’ theorem.
There appear to be no known solutions for U (p)

RS, but
based on Mukunda’s work it is clear that
U (p)

RS = 2UK � U (s)
RS is discontinuous in the aperture plane

because UK is discontinuous.
In addition to these publications, the pertinent litera-

ture also contains a considerable number of papers that
were, for the most part, intended to “save” Kirchhoff’s
theory in one way or another. For example, Kottler [13]
regarded Kirchhoff’s integral as the rigorous solution of
a “saltus” problem in which the wave function U has
prescribed discontinuities rather than boundary values at

Fig. 3. Behavior of the Rayleigh-Sommerfeld integral U (s)
RS for axial

points near a circular aperture of diameter 2w = 10� . Computed from
Eq. (7) of Ref. [12].

the aperture screen.1 Kottler’s theory involved the
above-mentioned Maggi-Rubinowicz transformation,
and subsequently the singularities inherent in the latter
led to the revival of a belief that diffraction can be
attributed to “boundary diffraction waves” emerging
from the edges of aperture screens. Marchand and Wolf
[14, 15] asserted that the inconsistencies of Kirchhoff’s
integral are only apparent and developed a theory in
which UK is expressed in terms of vector potentials that
have singularities even in free space. Born [16] sug-
gested the possibility that Kirchhoff’s formula may be
only one in a series of successive approximations, and
Franz [17] re-derived it by an iterative method in which
the discontinuities of previous solutions are regarded as
secondary sources of light. All in all, this curious ex-
change of conjectures has raised more questions than it
has answered. Most certainly, it has not addressed the
concerns of laboratory physicists in search of a “best”
theory for practical application.

3. Mathematical Expressions and
Numerical Results

3.1 General

In order to analyze the behavior of the Kirchhoff and
Rayleigh-Sommerfeld integrals in the proximity of aper-
tures it is necessary to derive usable expressions for
computations in the near zone. For this purpose and to
keep the calculations simple, it will be assumed in the
following that the incident field is a normally incident
plane wave so that the geometrical field in the aperture
is given by

Ugeom(Q) = �E0,
�Ugeom(Q)

�n
= ik�E0, (7a)

where E0 denotes irradiance, and Eqs. (5d) and (5e) can
be written in normalized form as

u (p)
RS(P) ≡ U (p)

RS(P)/�E0 = �
ik
2�

�
�

dQ
eikQP

QP
, (7b)

u (s)
RS(P) ≡ U (s)

RS(P)/�E0 =
1

2�
�
�

dQ
�

�n �eikQP

QP � =
1
ik

�u (p)
RS

�z
.

(7c)

1 Saltus is Latin for jump or leap . This author prefers the maxim that
natura non facit saltus .
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The simplicity of these relationships is a fortunate
consequence of having assumed a normally incident
plane wave. Once the above expression for u (p)

RS has been
evaluated, the solution for u (s)

RS follows by differentiation
with respect to z , and then Kirchhoff’s integral [Eq. (1)]
is co-determined as the arithmetic mean defined in Eq.
(6a). There is little doubt that other forms of the incident
field would have led to considerably more complicated
expressions without adding to the physical significance
of the results. In the following, Eqs. (7b) and (7c) will
be reduced to single integrals for the respective cases of
circular apertures and slits.

3.2 Circular Aperture

Let ABCB'A' be the rim of a circular aperture of
radius 2w which is centered on the origin O of a carte-
sian coordinate system, as shown in Fig. 4. As the corre-
sponding diffraction pattern must be rotationally sym-
metrical about the z -axis, it will be sufficient to
consider its variation in the xz -plane and the point of
observation may be chosen as P = (x , 0, z ). The inte-
grals [Eqs. (7b) and (7c)] may then be reduced to single
integrals by defining the area elements dQ so that they
are concentric with the projection Q0 = (x , 0, 0) of P
onto the aperture plane and coincide with the circles
QBQ� B' shown in the figure, where Q� = (� , 0, 0) is the
right-most point at which these circles intersect the x -
axis. Accordingly, the phases kQP will be constant and
equal to


 ≡ kQP = kQ� P = k�(� � x )2 + z 2 (8a)

everywhere on these area elements and the integration
can be carried out over the points Q� alone. As also
indicated in Fig. 4, these area elements are in general not
fully contained in the aperture and must therefore be
evaluated as

dQ = 2�d(� � x )(� � x )(1 � � /�), (8b)

where 2� is the angle subtended by the obstructed arc
BQ� B' and is given by

cos � =
w 2 � x 2 � (� � x )2

2x (� � x )
, (8c)

or � = 0 or �, as appropriate, when the right-hand side
of Eq. (8c) exceeds �1. Consequently, the integrals
[Eqs. (7b) and (7c)] can be expressed in the form

u (p)
RS(x , z ) = � ik 2�d(� � x )(� � x )(1 � � /�)

ei



 ,
(8d)

u (s)
RS(x , z ) =

1
ik

�u (p)
RS

�z

= k 2 z�d(� � x )(� � x )(1 � � /�)�1



� i� ei



 2 (8e)

Fig. 4. Geometrical notation used for circular apertures.
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the limits of integration being from 0 to w + x when
x  w and from x � w to x + w when x � w .

For the special case of axial points of observation
(x = 0) the angle � defined by Eq. (8c) is zero, so that
Eq. (8d) can be solved in closed form. On substitution of
i
 as a new integration variable and subsequent differen-
tiation with respect to z , one finds

u (p)
RS(0, z ) = eikz � eikW, W = �w 2 + z 2, (9a)

u (s)
RS(0, z ) = eikz �

zeikW

W
, (9b)

the latter being identical to the above-mentioned expres-
sion derived by Osterberg and Smith [13].

For x � 0, the numerical integration methods de-
scribed in Ref. [18] were used to find the real and
imaginary parts of Eqs. (8d) and (8e) for a small circular
aperture of diameter 2w = 10� at the distances
z = 0.01� , � , and 10� . The results obtained are shown
in Figs. 5a though 5c and will be discussed in Sec. 4.

3.3 Slit

Next we consider a diffracting slit of width 2w , cen-
tered in the xy -plane of a rectangular coordinate system
as indicated in Fig. 6. The corresponding diffraction
pattern will consist of straight bands which are parallel
to the slit jaws, and thus it will again be sufficient to
compute its variation in the xz -plane. For a given point
of observation P = (x , 0, z ) and for arbitrary aperture
points Q = (� , � , 0), Eq. (7b) becomes

u (p)
RS(x , z ) = �

ik
2�

�
w

�w

d��
�

��

d(k� )
eik�(��x)2+�2+z2

k�(� � x )2 + � 2 + z 2

=
k
2 �

w�x

�w�x

d(� � x )H(1)
0 (
 ), 
 = k�(� � x )2 + z 2 , (10a)

where H(1)
0 = J0 + iY0 is the Hankel function of the first

kind and zero order [19, 20], J0 and Y0 are the corre-
sponding Bessel functions of the first and second kind,
and 
 is the same as in Eq. (8a). Hence the solution for
u (s)

RS is obtained at once by substitution of �H(1)
0 /

�z = � k 2zH(1)
1 /
 into Eq. (10a), leading to

u (s)
RS(x , z ) =

1
ik

�u (p)
RS

�z
=

ik 2z
2 �

w�x

�w+x

d(� � x )
H(1)

1 (
 )



. (10b)

These expressions were evaluated by numerical integra-
tion, again using the methods of Ref. [18] and assuming
2w = 10� , z = 0.01� , � , and 10� . The results obtained

a

b

c

Fig. 5. Diffraction profiles for a circular aperture of diameter
2w = 10� at distances z ranging from 0.01� to 10� . The profiles
shown in each graph are the squared magnitudes of the Rayleigh-
Sommerfeld solutions U (p)

RS and U (s)
RS (labeled p and s ), and in addition

the dotted line in Fig. 5c represents the Fresnel approximation uF

(labeled F).
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Fig. 6. Geometrical notation used for slits.

are shown in Figs. 7a through c. It should be noted that,
in spite of the singularities of H(1)

0 (
 ) and H(1)
1 (
 )/
 at


 = 0, the computations for z = 0.01� presented no
problems as long as sufficiently small summation ele-
ments [�(� � x ) = 0.01w ] were used.

4. Discussion

The mathematical expressions derived in the previous
Section proved their worth for practical applications, in
that the computation of the diffraction profiles plotted in
Figs. 5 and 7 posed no problems. The results obtained
were everywhere finite, free from singularities, and pro-
vided new insight into the nature of diffraction in the
close proximity of apertures. In spite of the obvious
differences between the profiles pertaining to circular
apertures slits, their over-all behavior in the near zone is
similar so that it may be conjectured that the following
observations are not restricted to these specific aperture
forms.2

2 Although Kirchhoff’s solution is not explicitly mentioned here, its
behavior can easily be deduced as it is the arithmetic mean of the
Rayleigh-Sommerfeld integrals.

(1) As was to be expected, u (s)
RS replicates the assumed

rectangle functions Eqs. (6a,b) in the limit z → 0. How-
ever, it does not constitute an analytical continuation of
the incident field into the half space z > 0 because other-
wise �u (p)

RS/�z , and thus u (p)
RS, would also replicate their

corresponding boundary values. On the other hand, the
discontinuities of u (p)

RS do not manifest themselves in the
form of sudden jumps, as might be surmised from the
“saltus” interpretation of Kirchhoff’s theory. Instead,
they are oscillatory in nature and reminiscent of the
manner in which the rectangle functions Eqs. (6a,b)
might be approximated by a Fourier series.

(2) When z increases, u (p)
RS and u (s)

RS gradually converge
to the Fresnel’s integral in Eq. (3). For the aperture
width 10� assumed in the examples the Fresnel limit is
expected to be reached when z � 100� , and yet Figs. 5c
and 7c show that the differences between u (p)

RS and u (s)
RS are

already very small at only one tenth this distance. This
suggests that, according to the Rayleigh-Sommerfeld
theory, polarization effects are negligibly small even in
the near zone.

Although the mathematical expressions derived in
this paper will be useful for computations in the near
zone, it remains unclear which of them ought to be used
in given cases. In a pragmatic sense this may be a mute
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a

b

c

Fig. 7. Diffraction profiles for a slit of width 2w = 10� at distances z
ranging from 0.01� to 10� . The profiles shown in each graph are the
squared magnitudes of the Rayleigh-Sommerfeld solutions U (p)

RS and
U (s)

RS (labeled p and s ), and in addition the dotted line in Fig. 7c
represents the Fresnel approximation uF (labeled F).

question, because u (p)
RS and u (s)

RS are so similar in most of
the near zone that either will be an improvement over the
Fresnel approximation and it does not matter which is
used. Therefore, u (s)

RS could be (and has been) regarded as
the preferred solution as it is continuous in the aperture
plane, or Kirchhoff’s solution uK could be regarded as a
best compromise as it is the arithmetic mean of u (p)

RS and
u (s)

RS. In this author’s opinion, these are unfounded
guesses. The fact of the matter is that assessing the
physical significance of the Rayleigh-Sommerfeld inte-
grals requires additional considerations that will be the
subject of a subsequent paper.
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